Copied to
clipboard

?

G = C42.100D6order 192 = 26·3

100th non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.100D6, C6.1002+ (1+4), (C4×D12)⋊12C2, Dic3⋊D45C2, C4⋊D124C2, C4⋊C4.275D6, C127D442C2, D6.D45C2, (C2×C6).79C24, C12.6Q85C2, C42⋊C219S3, C2.12(D4○D12), (C4×C12).30C22, D6⋊C4.64C22, C22⋊C4.103D6, (C22×C4).216D6, C12.237(C4○D4), C4.121(C4○D12), (C2×C12).152C23, (C2×D12).25C22, Dic3⋊C4.4C22, (C22×S3).27C23, C4⋊Dic3.294C22, (C22×C6).149C23, C22.108(S3×C23), C23.100(C22×S3), (C2×Dic3).32C23, (C22×C12).309C22, C31(C22.34C24), C6.35(C2×C4○D4), C2.38(C2×C4○D12), (S3×C2×C4).196C22, (C3×C42⋊C2)⋊21C2, (C3×C4⋊C4).315C22, (C2×C4).280(C22×S3), (C2×C3⋊D4).12C22, (C3×C22⋊C4).118C22, SmallGroup(192,1094)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C42.100D6
C1C3C6C2×C6C22×S3C2×D12C4×D12 — C42.100D6
C3C2×C6 — C42.100D6

Subgroups: 712 in 240 conjugacy classes, 95 normal (23 characteristic)
C1, C2, C2 [×2], C2 [×5], C3, C4 [×2], C4 [×9], C22, C22 [×15], S3 [×4], C6, C6 [×2], C6, C2×C4 [×2], C2×C4 [×4], C2×C4 [×10], D4 [×12], C23, C23 [×4], Dic3 [×4], C12 [×2], C12 [×5], D6 [×12], C2×C6, C2×C6 [×3], C42 [×2], C22⋊C4 [×2], C22⋊C4 [×8], C4⋊C4 [×2], C4⋊C4 [×6], C22×C4, C22×C4 [×4], C2×D4 [×10], C4×S3 [×4], D12 [×8], C2×Dic3 [×4], C3⋊D4 [×4], C2×C12 [×2], C2×C12 [×4], C2×C12 [×2], C22×S3 [×4], C22×C6, C42⋊C2, C4×D4 [×2], C4⋊D4 [×6], C22.D4 [×4], C42.C2, C41D4, Dic3⋊C4 [×4], C4⋊Dic3 [×2], D6⋊C4 [×8], C4×C12 [×2], C3×C22⋊C4 [×2], C3×C4⋊C4 [×2], S3×C2×C4 [×4], C2×D12 [×6], C2×C3⋊D4 [×4], C22×C12, C22.34C24, C12.6Q8, C4×D12 [×2], C4⋊D12, Dic3⋊D4 [×4], D6.D4 [×4], C127D4 [×2], C3×C42⋊C2, C42.100D6

Quotients:
C1, C2 [×15], C22 [×35], S3, C23 [×15], D6 [×7], C4○D4 [×2], C24, C22×S3 [×7], C2×C4○D4, 2+ (1+4) [×2], C4○D12 [×2], S3×C23, C22.34C24, C2×C4○D12, D4○D12 [×2], C42.100D6

Generators and relations
 G = < a,b,c,d | a4=b4=1, c6=a2, d2=a2b2, ab=ba, ac=ca, dad-1=a-1, cbc-1=dbd-1=a2b, dcd-1=b2c5 >

Smallest permutation representation
On 96 points
Generators in S96
(1 90 7 96)(2 91 8 85)(3 92 9 86)(4 93 10 87)(5 94 11 88)(6 95 12 89)(13 56 19 50)(14 57 20 51)(15 58 21 52)(16 59 22 53)(17 60 23 54)(18 49 24 55)(25 67 31 61)(26 68 32 62)(27 69 33 63)(28 70 34 64)(29 71 35 65)(30 72 36 66)(37 82 43 76)(38 83 44 77)(39 84 45 78)(40 73 46 79)(41 74 47 80)(42 75 48 81)
(1 22 38 68)(2 17 39 63)(3 24 40 70)(4 19 41 65)(5 14 42 72)(6 21 43 67)(7 16 44 62)(8 23 45 69)(9 18 46 64)(10 13 47 71)(11 20 48 66)(12 15 37 61)(25 89 58 82)(26 96 59 77)(27 91 60 84)(28 86 49 79)(29 93 50 74)(30 88 51 81)(31 95 52 76)(32 90 53 83)(33 85 54 78)(34 92 55 73)(35 87 56 80)(36 94 57 75)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 89 44 76)(2 75 45 88)(3 87 46 74)(4 73 47 86)(5 85 48 84)(6 83 37 96)(7 95 38 82)(8 81 39 94)(9 93 40 80)(10 79 41 92)(11 91 42 78)(12 77 43 90)(13 34 65 49)(14 60 66 33)(15 32 67 59)(16 58 68 31)(17 30 69 57)(18 56 70 29)(19 28 71 55)(20 54 72 27)(21 26 61 53)(22 52 62 25)(23 36 63 51)(24 50 64 35)

G:=sub<Sym(96)| (1,90,7,96)(2,91,8,85)(3,92,9,86)(4,93,10,87)(5,94,11,88)(6,95,12,89)(13,56,19,50)(14,57,20,51)(15,58,21,52)(16,59,22,53)(17,60,23,54)(18,49,24,55)(25,67,31,61)(26,68,32,62)(27,69,33,63)(28,70,34,64)(29,71,35,65)(30,72,36,66)(37,82,43,76)(38,83,44,77)(39,84,45,78)(40,73,46,79)(41,74,47,80)(42,75,48,81), (1,22,38,68)(2,17,39,63)(3,24,40,70)(4,19,41,65)(5,14,42,72)(6,21,43,67)(7,16,44,62)(8,23,45,69)(9,18,46,64)(10,13,47,71)(11,20,48,66)(12,15,37,61)(25,89,58,82)(26,96,59,77)(27,91,60,84)(28,86,49,79)(29,93,50,74)(30,88,51,81)(31,95,52,76)(32,90,53,83)(33,85,54,78)(34,92,55,73)(35,87,56,80)(36,94,57,75), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,89,44,76)(2,75,45,88)(3,87,46,74)(4,73,47,86)(5,85,48,84)(6,83,37,96)(7,95,38,82)(8,81,39,94)(9,93,40,80)(10,79,41,92)(11,91,42,78)(12,77,43,90)(13,34,65,49)(14,60,66,33)(15,32,67,59)(16,58,68,31)(17,30,69,57)(18,56,70,29)(19,28,71,55)(20,54,72,27)(21,26,61,53)(22,52,62,25)(23,36,63,51)(24,50,64,35)>;

G:=Group( (1,90,7,96)(2,91,8,85)(3,92,9,86)(4,93,10,87)(5,94,11,88)(6,95,12,89)(13,56,19,50)(14,57,20,51)(15,58,21,52)(16,59,22,53)(17,60,23,54)(18,49,24,55)(25,67,31,61)(26,68,32,62)(27,69,33,63)(28,70,34,64)(29,71,35,65)(30,72,36,66)(37,82,43,76)(38,83,44,77)(39,84,45,78)(40,73,46,79)(41,74,47,80)(42,75,48,81), (1,22,38,68)(2,17,39,63)(3,24,40,70)(4,19,41,65)(5,14,42,72)(6,21,43,67)(7,16,44,62)(8,23,45,69)(9,18,46,64)(10,13,47,71)(11,20,48,66)(12,15,37,61)(25,89,58,82)(26,96,59,77)(27,91,60,84)(28,86,49,79)(29,93,50,74)(30,88,51,81)(31,95,52,76)(32,90,53,83)(33,85,54,78)(34,92,55,73)(35,87,56,80)(36,94,57,75), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,89,44,76)(2,75,45,88)(3,87,46,74)(4,73,47,86)(5,85,48,84)(6,83,37,96)(7,95,38,82)(8,81,39,94)(9,93,40,80)(10,79,41,92)(11,91,42,78)(12,77,43,90)(13,34,65,49)(14,60,66,33)(15,32,67,59)(16,58,68,31)(17,30,69,57)(18,56,70,29)(19,28,71,55)(20,54,72,27)(21,26,61,53)(22,52,62,25)(23,36,63,51)(24,50,64,35) );

G=PermutationGroup([(1,90,7,96),(2,91,8,85),(3,92,9,86),(4,93,10,87),(5,94,11,88),(6,95,12,89),(13,56,19,50),(14,57,20,51),(15,58,21,52),(16,59,22,53),(17,60,23,54),(18,49,24,55),(25,67,31,61),(26,68,32,62),(27,69,33,63),(28,70,34,64),(29,71,35,65),(30,72,36,66),(37,82,43,76),(38,83,44,77),(39,84,45,78),(40,73,46,79),(41,74,47,80),(42,75,48,81)], [(1,22,38,68),(2,17,39,63),(3,24,40,70),(4,19,41,65),(5,14,42,72),(6,21,43,67),(7,16,44,62),(8,23,45,69),(9,18,46,64),(10,13,47,71),(11,20,48,66),(12,15,37,61),(25,89,58,82),(26,96,59,77),(27,91,60,84),(28,86,49,79),(29,93,50,74),(30,88,51,81),(31,95,52,76),(32,90,53,83),(33,85,54,78),(34,92,55,73),(35,87,56,80),(36,94,57,75)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,89,44,76),(2,75,45,88),(3,87,46,74),(4,73,47,86),(5,85,48,84),(6,83,37,96),(7,95,38,82),(8,81,39,94),(9,93,40,80),(10,79,41,92),(11,91,42,78),(12,77,43,90),(13,34,65,49),(14,60,66,33),(15,32,67,59),(16,58,68,31),(17,30,69,57),(18,56,70,29),(19,28,71,55),(20,54,72,27),(21,26,61,53),(22,52,62,25),(23,36,63,51),(24,50,64,35)])

Matrix representation G ⊆ GL8(𝔽13)

10000000
01000000
001200000
000120000
00000207
000011070
00000602
000060110
,
80000000
08000000
001200000
000120000
00000010
00000001
000012000
000001200
,
1211000000
01000000
00010000
001210000
00000100
000012000
000000012
00000010
,
12000000
1212000000
001120000
000120000
00002060
000001106
000060110
00000602

G:=sub<GL(8,GF(13))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,11,0,6,0,0,0,0,2,0,6,0,0,0,0,0,0,7,0,11,0,0,0,0,7,0,2,0],[8,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[12,0,0,0,0,0,0,0,11,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0],[1,12,0,0,0,0,0,0,2,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,2,0,6,0,0,0,0,0,0,11,0,6,0,0,0,0,6,0,11,0,0,0,0,0,0,6,0,2] >;

42 conjugacy classes

class 1 2A2B2C2D2E2F2G2H 3 4A···4F4G4H4I4J4K4L4M6A6B6C6D6E12A12B12C12D12E···12N
order12222222234···44444444666661212121212···12
size111141212121222···2444121212122224422224···4

42 irreducible representations

dim11111111222222244
type+++++++++++++++
imageC1C2C2C2C2C2C2C2S3D6D6D6D6C4○D4C4○D122+ (1+4)D4○D12
kernelC42.100D6C12.6Q8C4×D12C4⋊D12Dic3⋊D4D6.D4C127D4C3×C42⋊C2C42⋊C2C42C22⋊C4C4⋊C4C22×C4C12C4C6C2
# reps11214421122214824

In GAP, Magma, Sage, TeX

C_4^2._{100}D_6
% in TeX

G:=Group("C4^2.100D6");
// GroupNames label

G:=SmallGroup(192,1094);
// by ID

G=gap.SmallGroup(192,1094);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,477,232,100,675,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=a^2,d^2=a^2*b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=a^2*b,d*c*d^-1=b^2*c^5>;
// generators/relations

׿
×
𝔽